当前位置:网站首页 > Java基础 > 正文

textrank教程java



参考文章:https://www.cnblogs.com/Luv-GEM/p/10884493.html

在TextRank之前我们需要先了解一下PageRank算法。事实上它启发了TextRank!PageRank主要用于对在线搜索结果中的网页进行排序

PageRank对于每个网页页面都给出一个正实数,表示网页的重要程度,PageRank值越高,表示网页越重要,在互联网搜索的排序中越可能被排在前面。

假设整个互联网是一个有向图,节点是网页,每条边是转移概率。网页浏览者在每个页面上依照连接出去的超链接,以等概率跳转到下一个网页,并且在网页上持续不断地进行这样的随机跳转,这个过程形成了一阶马尔科夫链,比如下图:
在这里插入图片描述
每个笑脸是一个网页,既有其他网页跳转到该网页,该网页也会跳转到其他网页。在不断地跳转之后,这个马尔科夫链会形成一个平稳分布,而PageRank就是这个平稳分布,每个网页的PageRank值就是平稳概率。




所以PageRank的定义意味着网页浏览者按照以下方式在网上随机游走:以概率d按照存在的超链接随机跳转,以等概率从超链接跳转到下一个页面;或以概率(1-d)进行完全随机跳转,这时以等概率(1/n)跳转到任意网页。

两种算法的相似之处:

  • 用句子代替网页
  • 任意两个句子的相似性等价于网页转换概率
  • 相似性得分存储在一个方形矩阵中,类似于PageRank的矩阵M

不过公式有些小的差别,那就是用句子的相似度类比于网页转移概率,用归一化的句子相似度代替了PageRank中相等的转移概率,这意味着在TextRank中,所有节点的转移概率不会完全相等。
在这里插入图片描述

 
  
 
  

输出:

 
  
 
  

输出:

 
  

 
  

输出:

 
  

简要介绍一下word2vec模型参数含义

  1. sentences: 我们要分析的语料,可以是一个列表,或者从文件中遍历读出。后面我们会有从文件读出的例子。
  2. size: 词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。
  3. window:即词向量上下文最大距离,这个参数在我们的算法原理篇中标记为c,window越大,则和某一词较远的词也会产生上下文关系。默认值为5。在实际使用中,可以根据实际的需求来动态调整这个window的大小。如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5,10]之间。
  4. sg: 即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型,是1则是Skip-Gram模型,默认是0即CBOW模型。
  5. hs: 即我们的word2vec两个解法的选择了,如果是0, 则是Negative Sampling,是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。
  6. negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。
  7. cbow_mean: 仅用于CBOW在做投影的时候,为0,则算法中的xw为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示xw,默认值也是1,不推荐修改默认值。
  8. min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。
  9. iter: 随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
  10. alpha: 在随机梯度下降法中迭代的初始步长。算法原理篇中标记为η,默认是0.025。
  11. min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。

word2vec的训练:

 
  

 
  
 
  

 
  

输出:

 
  

  • 上一篇: 厦门java教程
  • 下一篇: java 教程 vo
  • 版权声明


    相关文章:

  • 厦门java教程2026-02-20 13:18:00
  • 网络java视频教程2026-02-20 13:18:00
  • java指针使用教程2026-02-20 13:18:00
  • java偶数教程2026-02-20 13:18:00
  • java应用安装教程2026-02-20 13:18:00
  • java 教程 vo2026-02-20 13:18:00
  • JAVA版操作教程2026-02-20 13:18:00
  • java教程数据结构2026-02-20 13:18:00
  • java450集教程2026-02-20 13:18:00
  • java.nio教程2026-02-20 13:18:00