Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说分布式锁的实现方案[通俗易懂],希望能够帮助你!!!。
什么是分布式锁?
当多个进程在同一个系统中,用分布式锁控制多个进程对资源的访问。
分布式锁应用场景
01
传统的单体应用单机部署情况下,可以使用java并发处理相关的API进行互斥控制。
02
分布式系统后由于多线程,多进程分布在不同机器上,使单机部署情况下的并发控制锁策略失效,为了解决跨JVM互斥机制来控制共享资源的访问,这就是分布式锁的来源;分布式锁应用场景大都是高并发、大流量场景。
分布式锁实现
01
基于redis的分布式锁
redis分布式锁的实现
测试用例
单机
private RedissonClient getClient(){
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");//.setPassword("");//.setConnectionMinimumIdleSize(10).setConnectionPoolSize(10);//.setConnectionPoolSize();//172.16.10.164
RedissonClient redissonClient = Redisson.create(config);
return redissonClient;
}
private ExecutorService executorService = Executors.newCachedThreadPool();
@Test
public void test() throws Exception {
int[] count = {0};
for (int i = 0; i < 10; i++) {
RedissonClient client = getClient();
final RedisLock redisLock = new RedisLock(client,"lock_key");
executorService.submit(() -> {
try {
redisLock.lock();
count[0]++;
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
redisLock.unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.HOURS);
System.out.println(count[0]);
}
public static RLock create (String url, String key){
Config config = new Config();
config.useSingleServer().setAddress(url);
RedissonClient redissonClient = Redisson.create(config);
return redissonClient.getLock(key);
}
RedissonRedLock redissonRedLock = new RedissonRedLock(
create("redis://redis://127.0.0.1:6379","lock_key1"),
create("redis://redis://127.0.0.1:6380","lock_key2"),
create("redis://redis://127.0.0.1:6381","lock_key3"));
RedisRedLock redLock = new RedisRedLock(redissonRedLock);
private ExecutorService executorService = Executors.newCachedThreadPool();
@Test
public void test() throws Exception {
int[] count = {0};
for (int i = 0; i < 2; i++) {
executorService.submit(() -> {
try {
redLock.lock();
count[0]++;
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
redLock.unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.HOURS);
System.out.println(count[0]);
}
02
基于ETCD实现分布式锁分析
ETCD分布式锁的实现
03
基于ETCD分布式锁
**步骤1:**建立连接
客户端连接 Etcd,以 /etcd/lock 为前缀创建全局唯一的 key,假设第一个客户端对应的 key="/etcd/lock/UUID1",第二个为 key="/etcd/lock/UUID2";客户端分别为自己的 key 创建租约 - Lease,租约的长度根据业务耗时确定;
**步骤2:**创建定时任务作为租约的“心跳”
当一个客户端持有锁期间,其它客户端只能等待,为了避免等待期间租约失效,客户端需创建一个定时任务作为“心跳”进行续约。此外,如果持有锁期间客户端崩溃,心跳停止,key 将因租约到期而被删除,从而锁释放,避免死锁。
**步骤3:**客户端将自己全局唯一的 key 写入 Etcd
执行 put 操作,将步骤 1 中创建的 key 绑定租约写入 Etcd,根据 Etcd 的 Revision 机制,假设两个客户端 put 操作返回的 Revision 分别为 1、2,客户端需记录 Revision 用以接下来判断自己是否获得锁
**步骤 4:**客户端判断是否获得锁
客户端以前缀 /etcd/lock/ 读取 keyValue 列表,判断自己 key 的 Revision 是否为当前列表中最小的,如果是则认为获得锁;否则监听列表中前一个 Revision 比自己小的 key 的删除事件,一旦监听到删除事件或者因租约失效而删除的事件,则自己获得锁。
**步骤 5:**执行业务
获得锁后,操作共享资源,执行业务代码
**步骤 6:**释放锁
完成业务流程后,删除对应的key释放锁
eg:
public class EtcdDistributeLock extends AbstractLock{
private Client client;
private Lock lockClient;
private Lease leaseClient;
private String lockKey;
private String lockPath;
/** 锁的次数 */
private AtomicInteger lockCount;
/** 租约有效期,防止客户端崩溃,可在租约到期后自动释放锁;另一方面,正常执行过程中,会自动进行续租,单位 ns */
private Long leaseTTL;
/** 续约锁租期的定时任务,初次启动延迟,单位默认为 s,默认为1s,可根据业务定制设置*/
private Long initialDelay = 0L;
/** 定时任务线程池类 */
ScheduledExecutorService service = null;
/** 保存线程与锁对象的映射,锁对象包含重入次数,重入次数的最大限制为Int的最大值 */
private final ConcurrentMap<Thread, LockData> threadData = Maps.newConcurrentMap();
public EtcdDistributeLock(){}
public EtcdDistributeLock(Client client, String lockKey, long leaseTTL,TimeUnit unit){
this.client = client;
lockClient = client.getLockClient();
leaseClient = client.getLeaseClient();
this.lockKey = lockKey;
// 转纳秒
this.leaseTTL = unit.toNanos(leaseTTL);
service = Executors.newSingleThreadScheduledExecutor();
}
@Override
public void lock() {
// 检查重入性
Thread currentThread = Thread.currentThread();
LockData oldLockData = threadData.get(currentThread);
if (oldLockData != null && oldLockData.isLockSuccess()) {
// re-entering
int lockCount = oldLockData.lockCount.incrementAndGet();
if(lockCount < 0 ){
throw new Error("超出可重入次数限制");
}
return;
}
// 记录租约 ID
Long leaseId = 0L;
try{
leaseId = leaseClient.grant(TimeUnit.NANOSECONDS.toSeconds(leaseTTL)).get().getID();
// 续租心跳周期
long period = leaseTTL - leaseTTL / 5;
// 启动定时任务续约
service.scheduleAtFixedRate(new EtcdDistributeLock.KeepAliveRunnable(leaseClient, leaseId),
initialDelay,period,TimeUnit.NANOSECONDS);
LockResponse lockResponse = lockClient.lock(ByteSequence.from(lockKey.getBytes()), leaseId).get();
if(lockResponse != null){
lockPath = lockResponse.getKey().toString(Charset.forName("utf-8"));
log.info("获取锁成功,锁路径:{},线程:{}",lockPath,currentThread.getName());
}
}catch (InterruptedException | ExecutionException e){
log.error("获取锁失败",e);
return;
}
// 获取锁成功,锁对象设置
LockData newLockData = new LockData(currentThread, lockKey);
newLockData.setLeaseId(leaseId);
newLockData.setService(service);
threadData.put(currentThread, newLockData);
newLockData.setLockSuccess(true);
}
@Override
public void lockInterruptibly() throws InterruptedException {
super.lockInterruptibly();
}
@Override
public boolean tryLock() {
return super.tryLock();
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return super.tryLock(time,unit);
}
@Override
public void unlock() {
Thread currentThread = Thread.currentThread();
LockData lockData = threadData.get(currentThread);
if (lockData == null){
throw new IllegalMonitorStateException("You do not own the lock: " + lockKey);
}
int newLockCount = lockData.lockCount.decrementAndGet();
if ( newLockCount > 0 ) {
return;
}
if ( newLockCount < 0 ) {
throw new IllegalMonitorStateException("Lock count has gone negative for lock: " + lockKey);
}
try {
// 释放锁
if(lockPath != null){
lockClient.unlock(ByteSequence.from(lockPath.getBytes())).get();
}
if(lockData != null){
// 关闭定时任务
lockData.getService().shutdown();
// 删除租约
if (lockData.getLeaseId() != 0L) {
leaseClient.revoke(lockData.getLeaseId());
}
}
} catch (InterruptedException | ExecutionException e) {
log.error("解锁失败",e);
}finally {
// 移除当前线程资源
threadData.remove(currentThread);
}
}
@Override
public Condition newCondition() {
return super.newCondition();
}
/**
* 心跳续约线程类
*/
public static class KeepAliveRunnable implements Runnable {
private Lease leaseClient;
private long leaseId;
public KeepAliveRunnable(Lease leaseClient, long leaseId) {
this.leaseClient = leaseClient;
this.leaseId = leaseId;
}
@Override
public void run() {
// 对该leaseid进行一次续约
leaseClient.keepAliveOnce(leaseId);
}
}
public class EtcdLockTest {
private Client client;
private String key = "/etcd/lock";
private static final String server = "http://xxxx:xxxx";
private ExecutorService executorService = Executors.newFixedThreadPool(10000);
@Before
public void before() throws Exception {
initEtcdClient();
}
private void initEtcdClient(){
client = Client.builder().endpoints(server).build();
}
@Test
public void testEtcdDistributeLock() throws InterruptedException {
int[] count = {0};
for (int i = 0; i < 100; i++) {
executorService.submit(() -> {
final EtcdDistributeLock lock = new EtcdDistributeLock(client, key,20,TimeUnit.SECONDS);
try {
lock.lock();
count[0]++;
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
lock.unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.HOURS);
System.err.println("执行结果: " + count[0]);
}
}
04
基于Zookeeper分布式锁
实现原理
zookeeper作为高性能分布式协调框架,可以把其看做一个文件系统,其中有节点的概念,并且分为4种:1.持久性节点2.持久性顺序节点3.临时性节点4.临时性顺序节点。
分布式锁的实现主要思路就是:监控其他客户端的状态,来判断自己是否可以获得锁。
采用临时性顺序节点的原因:
eg:
public class ZKLock extends AbstractLock {
/**
* 1.Connect to zk
*/
private CuratorFramework client;
private InterProcessLock lock ;
public ZKLock(String zkAddress,String lockPath) {
// 1.Connect to zk
client = CuratorFrameworkFactory.newClient(
zkAddress,
new RetryNTimes(5, 5000)
);
client.start();
if(client.getState() == CuratorFrameworkState.STARTED){
log.info("zk client start successfully!");
log.info("zkAddress:{},lockPath:{}",zkAddress,lockPath);
}else{
throw new RuntimeException("客户端启动失败。。。");
}
this.lock = defaultLock(lockPath);
}
private InterProcessLock defaultLock(String lockPath ){
return new InterProcessMutex(client, lockPath);
}
@Override
public void lock() {
try {
this.lock.acquire();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
@Override
public boolean tryLock() {
boolean flag ;
try {
flag=this.lock.acquire(0,TimeUnit.SECONDS);
} catch (Exception e) {
throw new RuntimeException(e);
}
return flag;
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
boolean flag ;
try {
flag=this.lock.acquire(time,unit);
} catch (Exception e) {
throw new RuntimeException(e);
}
return flag;
}
@Override
public void unlock() {
try {
this.lock.release();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
private ExecutorService executorService = Executors.newCachedThreadPool();
@Test
public void testLock() throws Exception{
ZKLock zkLock = new ZKLock("xxxx:xxxx","/lockPath");
int[] num = {0};
long start = System.currentTimeMillis();
for(int i=0;i<200;i++){
executorService.submit(()->{
try {
zkLock.lock();
num[0]++;
} catch (Exception e){
throw new RuntimeException(e);
} finally {
zkLock.unlock();
}
});
}
executorService.shutdown();
executorService.awaitTermination(1, TimeUnit.HOURS);
log.info("耗时:{}",System.currentTimeMillis()-start);
System.out.println(num[0]);
}
总结
更多学习资料戳下方!!!
Redirecting...
上一篇
已是最后文章
下一篇
已是最新文章